Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Vaccines (Basel) ; 11(1)2022 Dec 22.
Article in English | MEDLINE | ID: covidwho-2232284

ABSTRACT

Although vaccine effectiveness reports are essential to assessing policies on SARS-CoV-2 vaccination, several factors can affect our interpretation of the results. These include the waning of antibodies, the prevailing viral variants at the time of the study, and COVID-19 disease prevalence in the population. Disease prevalence significantly impacts absolute risk reduction and could skew expected efficacy when increased disease prevalence inflates the absolute risk reduction in the face of a constant relative risk reduction. These factors must be considered in the interpretation of vaccine effectiveness to better understand how vaccines can improve disease prevention among the population. We highlight the impact of various factors on vaccine effectiveness.

2.
Hum Cell ; 2022 Oct 31.
Article in English | MEDLINE | ID: covidwho-2234148

ABSTRACT

The low incidence of pediatric severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection and the associated multisystem inflammatory syndrome (MIS-C) lack a unifying pathophysiological explanation, impeding effective prevention and therapy. Activation of the NACHT, LRR, and PYD domains-containing protein (NLRP) 3 inflammasome in SARS-CoV-2 with perturbed regulation in MIS-C, has been reported. We posit that, early age physiological states and genetic determinants, such as certain polymorphisms of renin-angiotensin aldosterone system (RAAS) molecules, promote a controlled RAAS hyperactive state, and form an evolutionary landscape involving an age-dependent erythropoietin (EPO) elevation, mediating ancestral innate immune defenses that, through appropriate NLRP3 regulation, mitigate tissue injury and pathogen invasion. SARS-CoV-2-induced downregulation of angiotensin-converting enzyme (ACE)2 expression in endothelial cells (EC), impairment of endothelial nitric oxide (NO) synthase (eNOS) activity and downstream NO bioavailability, may promote a hyperactive RAAS with elevated angiotensin II and aldosterone that, can trigger, and accelerate NLRP3 inflammasome activation, while EPO-eNOS/NO abrogate it. Young age and a protective EPO evolutionary landscape may successfully inhibit SARS-CoV-2 and contain NLRP3 inflammasome activation. By contrast, increasing age and falling EPO levels, in genetically susceptible children with adverse genetic variants and co-morbidities, may lead to unopposed RAAS hyperactivity, NLRP3 inflammasome dysregulation, severe endotheliitis with pyroptotic cytokine storm, and development of autoantibodies, as already described in MIS-C. Our haplotype estimates, predicted from allele frequencies in population databases, are in concordance with MIS-C incidence reports in Europeans but indicate lower risks for Asians and African Americans. Targeted Mendelian approaches dissecting the influence of relevant genetic variants are needed.

3.
Front Mol Biosci ; 9: 887178, 2022.
Article in English | MEDLINE | ID: covidwho-2228935

ABSTRACT

[This corrects the article DOI: 10.3389/fmolb.2021.658932.].

4.
Antibodies (Basel) ; 11(4)2022 Nov 08.
Article in English | MEDLINE | ID: covidwho-2109902

ABSTRACT

INTRODUCTION: We documented the total spike antibody (S-Ab), IgG S-Ab and neutralizing antibody (N-Ab) responses of BNT162b2/CoronaVac vaccinees up to 90 days post-booster dose. METHODS: We included 32 homologous regimen CoronaVac vaccinees and 136 BNT162b2 mRNA vaccinees. We tested their total S-Ab (Roche), IgG (Abbott) and N-Ab (Snibe) levels at set time points from January 2021 to April 2022. All subjects were deemed to be COVID-19-naïve either via clinical history (CoronaVac vaccinees) or nucleocapsid antibody testing (BNT162b2 vaccinees). RESULTS: All antibodies peaked 20-30 days post-inoculation. In BNT162b2 vaccinees, all post-booster antibodies were significantly higher than second-dose peaks. In CoronaVac vaccinees, IgG showed no significant differences between peak third-/second-dose titers (difference of 56.0 BAU/mL, 95% CI of -17.1 to 129, p = 0.0894). The post-vaccination titers of all antibodies in BNT162b2 vaccinees were significantly higher than those in CoronaVac vaccinees at all time points. Post-booster, all antibodies declined in 90 days; the final total/IgG/N-Ab titers were 7536 BAU/mL, 1276 BAU/mL and 12.5 µg/mL in BNT162b2 vaccinees and 646 BAU/mL, 62.4 BAU/mL and 0.44 µg/mL in CoronaVac vaccinees. CONCLUSION: The mRNA vaccine generated more robust total S-Ab, IgG and N-Ab responses after the second and third vaccinations.

5.
Vaccines (Basel) ; 10(10)2022 Oct 12.
Article in English | MEDLINE | ID: covidwho-2071934

ABSTRACT

INTRODUCTION: We tested the total spike antibody (S-Ab), IgG/IgM S-Ab, and neutralizing antibody (N-Ab) responses of COVID-19-naïve subjects from before their first BNT162b2 vaccination up to 210 days after boosting. METHODS: We studied 136 COVID-19-naïve subjects who received three doses of the Pfizer mRNA vaccine (39 males, 97 females, mean age 43.8 ± 13.5 years) from January 2021 to May 2022. Serum was assessed for total S-Ab (Roche), IgG/M (Abbott), and N-Ab (Snibe). RESULTS: Peak antibody levels were measured 20-30 days after each dose, with booster dosing eliciting significantly higher peak antibodies than the second dose: total S-Ab 2219 vs. 19,551 BAU/mL (difference 16,667 BAU/mL, p < 0.0001); IgG 2270 vs. 2932 BAU/mL (difference 660 BAU/mL, p = 0.04); and N-Ab 3.52 vs. 26.4 µg/mL (difference 21.4 µg/mL, p < 0.0001). Only IgM showed a lower peak post-booster antibody titer (COI 2.11 vs. 0.23, difference 1.63, 95% CI 1.05 to 2.38, p < 0.0001). By 180-210 days after the second or third vaccination, total S-Ab/IgG/N-Ab had decreased by 68.7/93.8/73.6% vs. 82.8/86.3/79.5%. The half-lives of IgG and N-Ab antibodies were longer after the third vaccination (IgG: 65 vs. 34 days, N-Ab: 99 vs. 78 days). CONCLUSION: Total S-Ab/IgG/N-Ab showed a greater increase post-booster, with IgG/N-Ab having a longer half-life.

7.
Antibodies (Basel) ; 11(2)2022 May 27.
Article in English | MEDLINE | ID: covidwho-1869444

ABSTRACT

INTRODUCTION: We compared the early total spike antibody (S-Ab) and neutralizing antibody (N-Ab) responses to two vaccines. METHODS: We studied 96 Pfizer and 34 Sinovac vaccinees over a 14-month period from January 2021 to February 2022. All vaccinees received three doses of one type of vaccine. Antibody levels (Roche Elecsys total S-Ab and the Snibe N-Ab) were tested 10 days after the first dose, 20 days after the second dose, and 20 days after the booster dose. RESULTS: At all time points, the mRNA vaccine generated higher S-Ab and N-Ab responses than the inactivated virus vaccine (S-Ab: first dose 2.48 vs. 0.4 BAU/mL, second dose 2174 vs. 98 BAU/mL, third dose 15,004 vs. 525 BAU/mL; N-Ab: first dose 0.05 vs. 0.02 µg/mL, second dose 3.48 vs. 0.38 µg/mL, third dose 19.8 vs. 0.89 µg/mL). mRNA vaccine recipients had a 6.2/22.2/28.6-fold higher S-Ab and 2.5/9.2/22.2-fold higher N-Ab response than inactivated virus vaccine recipients after the first/second/third inoculations, respectively. Mann-Whitney U analysis confirmed the significant difference in S-Ab and N-Ab titers between vaccination groups at each time point. CONCLUSIONS: The mRNA vaccines generated a more robust S-Ab and N-Ab response than the inactivated virus vaccine at all time points after the first, second, and third vaccinations.

8.
Diagnostics (Basel) ; 12(5)2022 Apr 21.
Article in English | MEDLINE | ID: covidwho-1847277

ABSTRACT

Antigen testing for SARS-CoV-2 has become an increasingly prominent screening tool in the ongoing COVID-19 pandemic and can be performed multiple times a week. However, the optimal weekly frequency of antigen testing is unclear; the Centers for Disease Control and Prevention recommends 1-3 times a week, while some experts support testing 2-3 times a week. In our own laboratory, all staff (n = 161) underwent twice- and thrice-weekly antigen tests during different periods from August 2021 to the present as part of routine COVID-19 surveillance of healthcare workers. No cases of COVID-19 were detected with either regimen. While more frequent SARS-CoV-2 antigen testing may allow antigen testing to be an important surrogate for RT-PCR testing, performing SARS-CoV-2 antigen tests twice or thrice a week shows no inferiority to each other in screening for COVID-19.

9.
World J Virol ; 11(2): 98-103, 2022 Mar 25.
Article in English | MEDLINE | ID: covidwho-1791990

ABSTRACT

Several mechanisms may explain how exercise training mechanistically confers protection against coronavirus disease 2019 (COVID-19). Here we propose two new perspectives through which cardiorespiratory fitness may protect against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Physical exercise-activated adenosine monophosphate (AMP)-activated protein kinase (AMPK) signaling induces endothelial nitric oxide (NO) synthase (eNOS), increases NO bio-availability, and inhibits palmitoylation, leading to specific and immediate SARS-CoV-2 protection. AMPK signaling also induces angiotensin 1-7 release and enhances eNOS activation thus further mediating cardio- and reno-protection. Irisin, a myokine released from skeletal muscles during aerobic exercise, also participates in the AMPK/Akt-eNOS/NO pathway, protects mitochondrial functions in endothelial cells, and antagonizes renin angiotensin system proinflammatory action leading to reductions in genes associated with severe COVID-19 outcomes. Collectively, all the above findings point to the fact that increased AMPK and irisin activity through exercise training greatly benefits molecular processes that mediate specific, immediate, and delayed SARS-CoV-2 protection. Maintaining regular physical activity levels is a safe and affordable lifestyle strategy against the current and future pandemics and may also mitigate against obesity and cardiometabolic disease syndemics. Move more because a moving target is harder to kill.

11.
Vaccines (Basel) ; 10(2)2022 Feb 18.
Article in English | MEDLINE | ID: covidwho-1704517

ABSTRACT

BACKGROUND: We evaluated the post-booster (BNT162b2) antibody responses in Singapore. METHODS: Participants (n = 43) were tested pre-booster and 20/30/60/90 days post-booster. Participants were boosted 120-240 days (mean 214 days) after their second dose and had no history or serologic evidence of prior COVID-19 infection; all participants had undetectable SARS-CoV-2 nucleocapsid antibodies throughout the study. Total nucleocapsid and spike antibodies (S-Ab) were assessed on the Roche Elecsys e802 and neutralizing antibody (N-Ab) on the Snibe quantitative N-Ab assay. RESULTS: Pre-booster median S-Ab/N-Ab titers were 829 BAU/mL/0.83 µg/mL; 2 participants were below manufacturer's N-Ab cut-offs of 0.3 µg/mL (0.192 and 0.229). Both S-Ab and N-Ab titers peaked at 30 days post-booster (median S-Ab 25,220 BAU/mL and N-Ab 30.3 µg/mL) at 30-37× pre-booster median levels. These peak post-booster S-Ab/N-Ab titers were 11× (25,220 vs. 2235 BAU/mL) and 9× (30.3 vs. 3.52 µg/mL) higher than the previously reported peak post-second dose levels. Antibody titers declined to 12,315 BAU/mL (51% decrease) and 14.3 µg/mL (53% decrease) 90 days post-booster. Non-linear regression estimates for S-Ab/N-Ab half-lives were 44/58 days. At 180 days post-booster, S-Ab/N-Ab are estimated to be 2671 BAU/mL/4.83 µg/mL. CONCLUSIONS: Both S-Ab and N-Ab show a good response following post-booster vaccination, with half-lives that may provide a prolonged antibody response.

12.
Vaccines (Basel) ; 10(2)2022 Jan 27.
Article in English | MEDLINE | ID: covidwho-1690154

ABSTRACT

INTRODUCTION: SARS-CoV-2 antigen tests can complement and substitute for RT-PCR tests. Centralized laboratory automated SARS-CoV-2 antigen tests that can be scaled to process a large number COVID-19 cases simultaneously are now available. We have evaluated the new Roche Elecsys SARS-CoV-2 antigen electro-chemiluminescent immunoassay. METHODS: The Roche SARS-CoV-2 antigen assay is a double-antibody sandwich electro-chemiluminescent immunoassay, which reports a cut-off index (COI) (COI ≥ 1.0 considered positive). We assessed assay precision and linearity, and confirmed the reactivity limit. We determined the assay sensitivity and specificity with a verification group (289 controls and 61 RT-PCR positive COVID-19 cases). Assay performance was also validated against the consecutive samples we received (7657 controls and 17 cases) for SARS-CoV-2 antigen testing from June to October 2021. RESULT: The assay had a within-run precision CV of 3.0% at COI 0.68, and a CV of 1.5% at COI 3.49. Between-run precision was 3.0% at COI 0.68 and 1.8% at COI 3.49. The assay was linear from COI 0.65 to 7.84. All 35 C50 ± 20% test results performed over 7 days were positive/negative, respectively. In the verification group, overall sensitivity was 42.6% (26/61 positive, 95% CI 30.0-55.9), and specificity was 99.7% (1/289 positive, 95% CI 98.1-100). The agreement between the SARS-CoV-2 antigen and the RT-PCR cycle threshold (Ct) count was good (r = 0.90). In cases with Ct counts ≤ 30, the antigen assay sensitivity improved to 94.7% (18/19 positive, 95% CI 74.0-99.9). In our validation group, antigen sensitivity was 62.5% (5/8 antigen positive, 95% CI 24.5-91.5) within the first week of disease onset, but no cases were reactive after the first week of disease onset. CONCLUSION: The Elecsys SARS-CoV-2 antigen assay has good performance within manufacturer specifications. The sensitivity of the Roche antigen assay was greatest when used in patients with lower RT-PCR Ct values (≤30) and within the first week of disease onset.

13.
Chem Biol Interact ; 354: 109834, 2022 Feb 25.
Article in English | MEDLINE | ID: covidwho-1649666

ABSTRACT

Certain aspects of the renin-angiotensin-aldosterone system (RAAS) have eluded deserved attention such as the role of erythropoietin (EPO) and nitric oxide (NO) both of which appear to significantly modulate COVID-19 disease course. Furthermore, renin-angiotensin-aldosterone system (RAAS) and endothelial NO synthase (eNOS) genetic polymorphisms additionally impact on EPO and NO homeostasis and have extensive implications on pharmacological disease management.


Subject(s)
Renin-Angiotensin System
14.
Antibodies (Basel) ; 10(4)2021 Dec 17.
Article in English | MEDLINE | ID: covidwho-1581082

ABSTRACT

While sensitivity and specificity are important characteristics for any diagnostic test, the influence of prevalence is equally, if not more, important when such tests are used in community screening. We review the concepts of positive/negative predictive values (PPV/NPV) and how disease prevalence affects false positive/negative rates. In low-prevalence situations, the PPV decreases drastically. We demonstrate how using two tests in an orthogonal fashion can be especially beneficial in low-prevalence settings and greatly improve the PPV of the diagnostic test results.

17.
Emerg Microbes Infect ; 10(1): 2141-2150, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1532382

ABSTRACT

BACKGROUND: We studied humoral and cellular responses against SARS-CoV-2 longitudinally in a homogeneous population of healthy young/middle-aged men of South Asian ethnicity with mild COVID-19. METHODS: In total, we recruited 994 men (median age: 34 years) post-COVID-19 diagnosis. Repeated cross-sectional surveys were conducted between May 2020 and January 2021 at six time points - day 28 (n = 327), day 80 (n = 202), day 105 (n = 294), day 140 (n = 172), day 180 (n = 758), and day 280 (n = 311). Three commercial assays were used to detect anti-nucleoprotein (NP) and neutralizing antibodies. T cell response specific for Spike, Membrane and NP SARS-CoV-2 proteins was tested in 85 patients at day 105, 180, and 280. RESULTS: All serological tests displayed different kinetics of progressive antibody reduction while the frequency of T cells specific for different structural SARS-CoV-2 proteins was stable over time. Both showed a marked heterogeneity of magnitude among the studied cohort. Comparatively, cellular responses lasted longer than humoral responses and were still detectable nine months after infection in the individuals who lost antibody detection. Correlation between T cell frequencies and all antibodies was lost over time. CONCLUSION: Humoral and cellular immunity against SARS-CoV-2 is induced with differing kinetics of persistence in those with mild disease. The magnitude of T cells and antibodies is highly heterogeneous in a homogeneous study population. These observations have implications for COVID-19 surveillance, vaccination strategies, and post-pandemic planning.


Subject(s)
Antibodies, Viral/blood , COVID-19/immunology , SARS-CoV-2/immunology , T-Lymphocytes/immunology , Adult , Antibodies, Neutralizing/blood , Cross-Sectional Studies , Humans , Male , Nucleocapsid Proteins/immunology
19.
World J Stem Cells ; 13(10): 1513-1529, 2021 Oct 26.
Article in English | MEDLINE | ID: covidwho-1524342

ABSTRACT

Erythropoietin (EPO) is the main mediator of erythropoiesis and an important tissue protective hormone that appears to mediate an ancestral neuroprotective innate immune response mechanism at an early age. When the young brain is threatened-prematurity, neonatal hyperbilirubinemia, malaria- EPO is hyper-secreted disproportionately to any concurrent anemic stimuli. Under eons of severe malarial selection pressure, neuroprotective EPO augmenting genetic determinants such as the various hemoglobinopathies, and the angiotensin converting enzyme (ACE) I/D polymorphism, have been positively selected. When malarial and other cerebral threats abate and the young child survives to adulthood, EPO subsides. Sustained high ACE and angiotensin II (Ang II) levels through the ACE D allele in adulthood may then become detrimental as witnessed by epidemiological studies. The ubiquitous renin angiotensin system (RAS) influences the α-klotho/fibroblast growth factor 23 (FGF23) circuitry, and both are interconnected with EPO. Here we propose that at a young age, EPO augmenting genetic determinants through ACE D allele elevated Ang II levels in some or HbE/beta thalassemia in others would increase EPO levels and shield against coronavirus disease 2019, akin to protection from malaria and dengue fever. Human evolution may use ACE2 as a "bait" for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) to gain cellular entry in order to trigger an ACE/ACE2 imbalance and stimulate EPO hypersecretion using tissue RAS, uncoupled from hemoglobin levels. In subjects without EPO augmenting genetic determinants at any age, ACE2 binding and internalization upon SARS-CoV-2 entry would trigger an ACE/ACE2 imbalance, and Ang II oversecretion leading to protective EPO stimulation. In children, low nasal ACE2 Levels would beneficially augment this imbalance, especially for those without protective genetic determinants. On the other hand, in predisposed adults with the ACE D allele, ACE/ACE2 imbalance, may lead to uncontrolled RAS overactivity and an Ang II induced proinflammatory state and immune dysregulation, with interleukin 6 (IL-6), plasminogen activator inhibitor, and FGF23 elevations. IL-6 induced EPO suppression, aggravated through co-morbidities such as hypertension, diabetes, obesity, and RAS pharmacological interventions may potentially lead to acute respiratory distress syndrome, cytokine storm and/or autoimmunity. HbE/beta thalassemia carriers would enjoy protection at any age as their EPO stimulation is uncoupled from the RAS system. The timely use of rhEPO, EPO analogs, acetylsalicylic acid, bioactive lipids, or FGF23 antagonists in genetically predisposed individuals may counteract those detrimental effects.

20.
Front Mol Biosci ; 8: 658932, 2021.
Article in English | MEDLINE | ID: covidwho-1515538

ABSTRACT

Coronavirus disease-19 (COVID-19) is caused by the newly discovered coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). While the lung remains the primary target site of COVID-19 injury, damage to myocardium, and other organs also contribute to the morbidity and mortality of this disease. There is also increasing demand to visualize viral components within tissue specimens. Here we discuss the cardiac autopsy findings of 12 intensive care unit (ICU) naïve and PCR-positive COVID-19 cases using a combination of histological, Immunohistochemical/immunofluorescent and molecular techniques. We performed SARS-CoV-2 qRT-PCR on fresh tissue from all cases; RNA-ISH and IHC for SARS-CoV-2 were performed on selected cases using FFPE tissue from heart. Eight of these patients also had positive post-mortem serology for SARS-CoV-2. Histopathologic changes in the coronary vessels and inflammation of the myocardium as well as in the endocardium were documented which support the reports of a cardiac component to the viral infection. As in the pulmonary reports, widespread platelet and fibrin thrombi were also identified in the cardiac tissue. In keeping with vaccine-induced activation of virus-specific CD4+ and CD8+ T cells, and release of cytokines such as interferon-gamma (IFNγ), we observed similar immune cellular distribution and cytokines in these patients. Immunohistochemical and immunofluorescent localisation for the viral Spike (S-protein) protein and the nucleocapsid protein (NP) were performed; presence of these aggregates may possibly contribute to cardiac ischemia and even remodelling.

SELECTION OF CITATIONS
SEARCH DETAIL